On S - Near Rings and S' - Near Rings with **Right Bipotency**

[1] D.Radha, [2] C.Dhivya

[1] PG and Research Department of Mathematics

A.P.C Mahalaxmi College for Women, Thoothukudi,

Tamil Nadu, India.

[2] Research Scholar

A.P.C Mahalaxmi College for Women, Thoothukudi,

Tamil Nadu, India.

Abstract:-- A **right near ring** $(N, +, \cdot)$ is an algebraic system with two binary operations such that (i) (N, +) is a group - (not necessarily abelian) with 0 as its identity element, (ii) (N, \cdot) is a semigroup (we write xy for $x \cdot y$ for all x, y in N) and (iii) (x + y)z = xz + yz for all x, y, z in N. We say that N is zero symmetric if n0 = 0 for all n in N. N is called an S - near ring or an S' - near ring according as $x \in Nx$ or $x \in xN$ for all $x \in N$. A subgroup M of N is called an N-subgroup if $NM \subset N$ M and an invariant N-subgroup if, in addition, $MN \subset M$. An element α in N is said to be distributive, if a(b+c) = ab + ac for all b and c in N; N is called distributively generated (d.g.), if the additive group of N is generated by the multiplicative semigroup of distributive elements of N.

A near ring N is defined to be **right bipotent** if $aN = a^2N$ for each a in N. In this paper, we have proved some more results on right bipotent near rings by using the concepts of S' - near ring; subcommutativity; regularity; reduced property etc. It is proved that every right bipotent near ring is an S' - near ring and it is also S - near ring if it is also subcommutative. Every regular near ring is central and reduced if it is right bipotent. Some special characterizations are obtained in such a way that, a reduced right bipotent near ring is a near field if $N = N_d$ and it is a division ring if it is dgnr.

Keywords:-- S near ring, S'- near ring, near field, right bipotent near ring, subcommutative, nilpotent, right N - subgroup, zero divisors, regular near ring, division ring, distributively generated near ring.

1.Introduction

Near rings can be thought of as generalized rings: if in a ring we ignore the commutativity of addition and one distributive law, we get a near ring. Taussky [24] in 1936 and B.H.Neumann [13] in 1940 considered near rings in which addition need not be commutative. Since then the theory of near rings has been developed much. Later Frolich

[6], Beidleman [2], Oswald [14] and many other researchers had done and have been doing extensive work on different aspects of near rings. Gunter Pilz [5] "Near rings" is an extensive collection of the work done in the area of near rings.

A near ring N is defined to be **left bipotent** if $Na = Na^2$ for each a in N. The definitions for S - Near ring and S' - Near ring

are dealt in P(r,m) Near rings by R. Balakrishnan and S. Suryanarayanan in [1].

2. Preliminaries

Definition 2.1 [9]

N is said to be **subcommutative**, if aN = Na for all $a \in N$.

Definition 2.2 [5]

An element $n \in N$ is called **nilpotent** if $n^k = 0$ for some positive integer k.

Definition 2.3 [8]

A near ring N is **regular** if for each a in N, there exists x in N such that a = axa.

Definition 2.4

An element e in N is called **idempotent** if $e^2 = e$.

Definition 2.5 [5]

An idempotent a in N is called a central if ax = xa for all x in N.

Definition 2.6 [5]

Let (P, +) be a group with 0 and let Nbe a near ring. Let $\mu: N \times P \to P$; (P, μ) is called an **N-group** if for all $p \in P$ and for all $n, n_1 \in N$ we have $(n + n_1)p = np + n_1p$ and $(nn_1)p = n(n_1p)$. N^P stands for N-groups.

Definition 2.7 [5]

A subgroup S of N^P with $NS \subset S$ is a N-subgroup of P.

Definition 2.8 [8]

An additive group A of N is called a **left** *N*-subgroup if $NA \subseteq A$ where NA = $\{ra/r \in N, a \in A\}.$

Definition 2.9 [8]

An additive group A of N is called a **right** *N*-subgroup if $AN \subseteq A$ where AN = $\{ar/r \in N, a \in A\}.$

Definition 2.10 [8]

For any subset A of a near ring N, Define $\sqrt{A} = \{x \in N / x^n \in A, for some n\}.$

Definition 2.11 [12]

An element $0 \neq x \in N$ is called a **right zero divisor** if $\exists \ 0 \neq a \in N$ such that ax = 0

Definition 2.12 [12]

An element $0 \neq x \in N$ is called a **left zero divisor** if $\exists \ 0 \neq a \in N$ such that xa = 0.

Definition 2.13 [5]

If all non zero elements of N are left (right) cancelable, we say that N fulfills the **left** (right) cancellation law.

Definition 2.14 [8]

N is called a **near-field** if it contains an identity and each non zero element has a multiplicative inverse.

Notation 2.15 [5]

Let $N_d = \{d \in N | d \text{ is distributive}\}$

Definition 2.16 [5]

If $N = N_d$, N is said to be distributive.

Definition 2.17 [1]

N is called an S - near ring according as $x \in Nx$ for all $x \in N$.

Definition 2.18 [1]

N is called an S' - near ring according as $x \in xN$ for all $x \in N$.

Definition 2.19 [25]

A near ring N is defined to be **right bipotent** if $aN = a^2N$ for each a in N.

3.Main Results

Theorem 3.1

Every Right Bipotent near ring is an S'- near ring.

Proof:

Let *N* be right bipotent. This implies $a^2N = aN$. Therefore $a \in a^2N = aN$. This implies $a \in aN$. Hence *N* is *S'*- near ring.

Corollary 3.2

Every S- near ring is S' - near ring if it is subcommutative with vice versa.

Proof:

Let N be S - near ring.

Then, $x \in Nx = xN$ for all x in N. This implies $x \in xN$. Hence N is S'- near ring.

Converse follows.

Result 3.3

Any right bipotent subcommutative near ring is an *S* - near ring.

Theorem 3.4

Homomorphic images of right bipotent S' -near rings are also such.

Proof:

Let $f: N \to N'$ be a homomorphism of near rings N onto N', and let N be a right bipotent S'- near ring. If $a \in N'$, there exists $b \in N$ such that f(b) = a. By assumption, we have $bN = b^2N$. Then f(bN) = f(b)f(N) = aN' and $f(b^2N) = f(b^2)f(N) = [f(b)]^2f(N) = a^2N'$. Thus $bN' = b^2N'$. Now since $b \in bN$, we have $a = f(b) \in f(bN) = aN'$.

Theorem 3.5

A regular near ring N is right bipotent if each idempotent in N is central.

Proof:

N is regular, so far a in N, there exists x in N such that a = axa. Let ax = e. Now, $(ax)^2 =$

(ax)(ax) = (axa)x = ax. Therefore ax is an idempotent. Now a = axa = aax (since idempotents are central) $= a^2x$. Hence $aN = a^2N$ and N is right bipotent.

Theorem 3.6

Let N be an S' - near ring, then N is regular iff for each $a \neq 0$ in N, there exists an idempotent e such that aN = eN.

Proof:

If *N* is a regular near ring, then for every a in *N*, there exists x in *N* such that a = axa

Let ax = e. Now, $(ax)^2 = (ax)(ax) = (axa)a = ax = e$. (i.e) $e^2 = e$. Therefore e is an idempotent and aN = eN. (for $aN = axaN \subseteq axN = eN \subseteq aN$). Conversely, Let N be an S' - near ring satisfying the given condition. For any $d \in N$, there exists an idempotent b such that $d \in dN = bN$. This implies d = bu for some u in N. Also $b \in bN = dN$. This implies b = dy for some y in b. Now b0 in b1. Now b2 in b3. Therefore b4 is a regular near ring.

Theorem 3.7

A right bipotent near ring N is regular iff it is an S' - near ring.

Proof:

Let N be regular near ring. This implies for each a in N, there exists x in N such that a = axa. Let ax = e. Now $(ax)^2 = (ax)(ax) = (axa)x = ax$. Therefore ax is an idempotent. Now $a = axa = aax = a^2x \in a^2N = aN$. This implies $a \in aN$. Therefore every regular near ring is an S' - near ring. Conversely, Let N be a right bipotent S' - near ring. Then for each a in N, $a \in aN = a^2N$ and so $a^2 = a^4z$ for some z in N. This implies $a^2a^2 = a^4za^2$. This gives $(a^2 - a^2za^2)a^2 = 0$ and $(a^2 - a^2za^2)a^2za^2 = 0$. $(a^2 - a^2za^2)^2 = (a^2 - a^2za^2)(a^2 - a^2za^2) = (a^2 - a^2za^2)a^2 - (a^2 - a^2za^2)a^2za^2 = 0$. Therefore $(a^2 - a^2za^2)^2 = 0$. From this we get $a^2 - a^2za^2 = 0$. Hence $a^2 = a^2za^2$. Let $a^2z = e$. Now, $(a^2z)^2 = (a^2z)(a^2z) = (a^2za^2)z = a^2z$. Therefore a^2z is an idempotent and $aN = a^2N = a^2za^2N \subseteq a^2zN = eN \subseteq a^2N = aN$. Hence by Theorem 3.6, N is regular.

Theorem 3.8

A right bipotent near ring is an S' - near ring iff it has no non zero nilpotent elements.

Proof:

Let N be a right bipotent S' - near ring. Let $b \in N$ be nilpotent. For some positive n, $b^n = 0$. Then $b \in bN = b^2N = \cdots = b^nN$ and b = 0. Conversely, Let N be right bipotent with no non zero nilpotent elements. If $x \in N$, then $xN = x^2N$ so $x^2 = x^2y$ for some y in N. This implies $x^2 - x^2y = 0$. This gives (x - xy)x = 0. Also (x - xy)xy = 0. Now, $(x - xy)^2 = (x - xy)(x - xy) = (x - xy)x - (x - xy)xy = 0$. Hence $(x - xy)^2 = 0$. This implies x - xy = 0. This gives x = xy. Therefore $x \in xN$. Hence $x \in xN$ is an $x \in xN$ is an $x \in xN$.

Corollary 3.9

A right bipotent near ring is regular iff it is reduced.

Proof: Follows by Theorems 3.7 and 3.8

Theorem 3.10

An S' - near ring is right bipotent iff $A = \sqrt{A}$ for every right N-subgroup A of N.

Proof:

Clearly $A \subseteq \sqrt{A}$. Now let $a \in \sqrt{A}$, then $a^n \in A$ for some n. Also we have $aN = a^2N = \cdots = a^nN$ in a right bipotent near ring. Since N is an S' - near ring, $a \in aN = a^nN$. This gives $a = a^nb$ for some b in N. Thus $a \in A$, (since $a^n \in A$ and A is a right N-subgroup of N). Hence $\sqrt{A} \subseteq A$. Conversely, we have to prove that if N is an S' - near ring with the condition $A = \sqrt{A}$ for every right N-subgroup A of N then N is right bipotent. For $a \in N$, $a^3 \in a^2N$ and $a \in \sqrt{a^2N} = a^2N$. Then $aN \subseteq a^2N \subseteq aN$ and N is right bipotent.

Theorem 3.11

Let N be a right bipotent near ring with no zero divisors. If N has a non zero distributive element, then N is a near field.

Proof:

N is regular. Let d be a non zero distributive element in N, then there exists x in N such that d = dxd. Let dx = e. Now, $(dx)^2 = (dx)(dx) = (dxd)x = dx$. Therefore dx is an idempotent. If r is any element in N, then r(d - dxd) = 0. This implies r(d - ed) = 0. This gives r - re = 0 (since d is a distributive element). From this, we r = re. That is, e is a right identity in N. If $a \in N$ with $a \ne 0$ then $aN = a^2N$. Therefore, $ae = a^2y$ for some y in N. This implies a(e - ay) = 0. This gives e - ay = 0 (since $a \ne 0$). From this, we get e = ay. That is, e = ay is a right inverse of e = ay. Hence e = ay. That is, e = ay. That is, e = ay is a right inverse of e = ay. Hence e = ay. That is, e = ay.

Corollary 3.12

Let N be a right bipotent distributively generated (d.g.) near ring with no zero divisors then N is a division ring.

Proof:

By Theorem 3.11, N is a near field and so (N, +) is abelian (see(6)). Moreover, a d.g. near ring with (N, +) abelian is a ring (13). Therefore, N is a division ring.

Bibliography

- 1. R.BALAKRISHNAN and S.SURYANARAYANAN, *P*(*r*,*m*) *Near Rings*, Bull. Malasyian Math. Sc. Soc. (Second Series) 23 (2000), 117-130.
- 2. J.C.BEIDLEMAN, A note on regular near rings, J. Indian Math. Soc. 33 (1969), 207-210.
- 3. V.R.CHANDRAN, *On right bipotent rings*, Abstract in Notices Amer. Math. Soc. Nov. (1970).
- 4. J.R.CLAY, The near rings on groups of low order, Math. Z. 104 (1968), 364-371.
- 5. GUNTER PILZ, Near rings, North Holland, Amsterdam, 1983.
- 6. A.FROHLICH, Distributively generated near rings (I Ideal Theory), Proc. London Math. Soc. 8 (1958), 76-94.
- 7. H.E.HEATHERLY, Near rings without nilpotent elements, Pub. Math. Debrecen 20 (1973), 201-205.
- 8. J.L.JAT and S.C.CHOUDHARY, *On Left Bipotent Near-Rings*, Proceedings of the Edinburgh Mathematical Society (1979), 22, 99 107©.
- 9. K.KARTHY and P.DHEENA, *On Unit Regular Near-Rings*, Journal of the Indian Math., Soc. Vol.68, Nos 1-4: 2001, 239-243.
- 10. S.LIGH, *On regular near rings*, Math. Japonicae Ser (1) 15 (1970), 7-13.

- 11. S.LIGH, On distributively generated near rings, 1968.
- 12. S.LIGH and J.J. Malone, Jr, Zero Divisors and Finite Near Rings, https://www.cambridge.org/core https://www.cambridge.org/core/terms.h ttps://doi.org/10.1017/S1446788700006 807
- 13. B.H.NEUMANN, *On the commutativity of addition*, J. London Math. Soc. 15 (1940), 203-208.
- 14. A.OSWALD, *Near rings in which every N-subgroup is principal*, Proc. London
 Math. Soc. 28 (1974), 68-88.
- 15. D.Radha and V.Selvi, *Stable and Pseudo Stable Gamma Near Rings*, Proceedings on National Conference on Recent Trends in Pure and Applied Mathematics, September 2017, ISBN: 978-81-935198-1-3.
- 16. D.Radha and C. Raja Lakshmi, *A study* on semicentral Seminear rings,
 Proceedings; National Seminar on New Dimensions in Mathematics and its
 Applications, October 17, 2018, ISBN No:(yet to receive).
- 17. D.Radha and P.Meenakshi, *Some Structures of Idempotent Commutative Semigroup*, International Journal of Science, Engineering and Management (IJSEM) Vol 2, Issue 12, December 2017, ISSN (Online) 2456-1304.
- 18. D.Radha and C. Raja Lakshmi, *On Weakly* π *Subcommutative* Γ *Near Rings*, Proceedings on National Conference on Innovations in Mathematics (NCIM 2018), Feburary

- 2018, ISBN: 978-81-935198-5-1, Page (10-18).
- 19. D.Radha and M.Kavitha, Pseudo Symmetric Ternary Γ - Semiring, Proceedings on National Conference on Innovations in Mathematics (NCIM -2018), Feburary 2018, ISBN: 978-81-935198-5-1, Page (19-24).
- 20. D.Radha and C.Raja Lakshmi, On Zero -Symmetric Semicentral Γ - Near Rings, International Journal of Science, Engineering and Management (IJSEM) Vol 3, Issue 4, April 2018, ISSN (Online) 2456-1304.
- 21. D.Radha and S.Suguna, Normality in *Idempotent Commutative* Γ - *Semigroup*, International Journal of. Science, Engineering and Management (IJSEM) Vol 3, Issue 4, April 2018, ISSN (Online) 2456-1304.
- 22. D.Radha and M.Parvathi Banu, Left Singularity and Left Regularity in Near Idempotent Γ - Semigroup, International Journal of Science, Engineering and Management (IJSEM) Vol 3, Issue 4, April 2018, ISSN (Online) 2456-1304.
- 23. F.SZASZ. A class of regular rings, Monatsh. Math. 75 (1971), 168-172.
- 24. TAUSSKY, Rings with non commutative addition, Bull. Calcutta Math. Soc. 28 (1936), 245-246.
- 25. YOUNG BAE JUN, Some results on right bipotent and rs-near rings, Journal of the Korea Society of Mathematical Education Jun. 1982, Vol. XX, No. 3.